Integrated Biological and Chemical Engineering for Energy and SustainabilitySystems
发布时间:2024-11-28 浏览次数:
报告题目:Integrated Biological and Chemical Engineering for Energy and SustainabilitySystems
报 告 人:戴沅博士 密苏里大学化工和生物医学工程系教授
时 间:
2024年 11月30日(周六)上午10:00-11:00
地 点:
中南大学新校区化学楼 230 会议室
报告人简介:
戴沅(Susie y.Dai)博士在复旦大学获得化学学士学位,杜克大学获得化学博士学位,现任密苏里大学化工和生物医学工程系 MizzouForward 计划特聘教授。戴博士于 2019 年至 2024 兼任爱荷华州环境健康人群普查项目主任2016 年至 2019 任爱荷华州公众卫生实验室副主任,环境健康部主任,2008 年至 2016 年德州州立化学实验室科研项目负责人。多年来,戴博士致力于推进对社会可持续发展至关重要的跨学科创新,注重将化学、生物和材料工程结合起来,设计多种集成系统能广泛运用于生物能源,低碳经济,环境保护和环境健康领域。戴博士作为通讯作者的文章发表在 Joule, Chem, Nature Communications, Advanced Science,and Angew.chem.Int. Ed.
报告摘要:
Our generation faces daunting energy and environmental challenges, ranging from greenhouse gas emissionsto the accumulation of persistent contaminants. The solutions to those challenges cannot rely on chemicasolutions alone but require integrated approaches with high energy efficiency yet low negative environmentaimpacts. To overcome these challenges, we have constructed various chem-bio and material-bio hybrid systemsand processes to achieve sustainable commodity product manufacturing from CO2 and efficient bioremediationof persistent organic pollutants (POPs) like PFAS. First, we have integrated the catalyst and microbial designsto build highly efficient Chem-Bio synthetic pathways, producing electrobioplastics and electrobiodiesel fromCO2 with more than four-fold higher efficiency than natural photosynthesis. Second, we employed a reverseengineering principle and designed a biomimicking sorbent derived from lignocellulosic biomass, achieving arecord level of PFAS absorption. Since the sorbent is lignocelulosic biomass-based, it can support the growth ofbioremediation fungus and induce redox enzyme expression. The material-bio system creates an integratedtreatment train, where the biomimicking sorbent absorbs PFAS and presents to fungus for bioremediation.avoiding secondary hazards and substantially improving bioremediation capacity. Furthermore, based on ourunderstanding of biomass structure, we have designed a lignin nanoparticle-doped catalyst to achieve efficienPOP degradation and bacterial removal under ambient conditions. Finally, we have leveraged the chemometricsapproach to achieve efficient community sampling and risk management for safeguarding public health throuarreducing environmental chemical exposure in vulnerable communities.
邀请人:刘伟 特聘教授